

Introduction to
Web Mapping Applications

Using MapServer

In this workshop you will learn how to create an application similar to the one

shown below using MapServer version 3.6 and higher.

You will start with a simple application and add components of increasing
complexity to create a WMS compliant application with on-the-fly projection.

Requirements:
Apache httpd server
MapServer 3.6.x or 4.x Beta
Text editor (Word Pad or Notepad)
Web browser (Internet Explorer)

Workshop dataset (will be available on the MapServer web site)
References:
MapServer Home Page:
 http://mapserver.gis.umn.edu/
MapServer Documentation Page
 http://mapserver.gis.umn.edu/doc.html
Template Reference
 http://mapserver.gis.umn.edu/doc/cgi-reference.html
Map file Reference (Bookmark this page now)
 http://mapserver.gis.umn.edu/doc/mapfile-reference.html

Getting Started

Installation
Everything you need to get started has already been installed. Executables and
installation instructions for Windows can be downloaded on MapServer's
(http://mapserver.gis.umn.edu/win32binaries.html) or DM Solutions'
(http://www2.dmsolutions.ca/mapserver/dl) web site.

The system I used is configured as follows (this could change):
 Apache Document Root: C:\Program Files\Apache
 Group\Apache2\htdocs
 Script Alias Directory: C:\Program Files\Apache
 Group\Apache2\cgi-bin
 MapServer Executable: C:\Program Files\Apache
 Group\Apache2\cgi-bin\mapserv.exe

Workshop Files: C:\Program Files\Apache
 Group\Apache2\htdocs\ms_workshop

Workshop Web Page: http://localhost/ms_workshop/
Temp Directory: C:\Program Files\Apache

 Group\Apache2\htdocs\tmp
Temp URL: http://localhost/tmp/

Before we begin with the first exercise, let us take the time to make an index file.
Open a text editor (vi, nedit, xedit, whatever you're comfortable with) and type
in the following HTML code:
<html>
 <head>
 <title>MapServer Examples</title>
 </head>
 <body bgcolor=”#ffffff”>
 <h1 align=”center”>
 Example 1
 </h1>
 </body>

http://mapserver.gis.umn.edu/
http://mapserver.gis.umn.edu/doc.html
http://mapserver.gis.umn.edu/doc/mapfile-reference.html
http://mapserver.gis.umn.edu/doc/mapfile-reference.html
http://mapserver.gis.umn.edu/win32binaries.html
http://www2.dmsolutions.ca/mapserver/dl

</html>

Save this as index.html and open it on a web browser by typing the following
URL: http://localhost/ms_workshop/. We will add links to this page
throughout the course of the workshop.

Example 1: Displaying a basic map
Let's open the file “example1.html” (under C:/Program Files/Apache
Group/Apache2/htdocs/ms_workshop). Make sure the code includes the
following line:
<img border="1" src="/cgi-bin/mapserv.exe?
Map=C:/Program Files/Apache
Group/Apache2/htdocs/ms_workshop/example1.map&mode=map">

View this page by clicking on the “Example 1” link from the index page. This
shows you how to display a static map on a page.

Now, open the map file “example1.map”. This is the configuration file for
Example 1; it’s referenced in the “src” attribute of the “img” tag. It describes
some basic configuration parameters for the application and one “LAYER”,
based on the shapefile “states_ugl.shp”, showing the outline of the Upper Great
Lakes states of Minnesota, Wisconsin, and Michigan. The “CLASS” object tells
MapServer how to draw the polygons in the shape file. You can draw only the
land polygons by using the attribute in the shapefile called “CLASS”.

•Add the following line to the “CLASS” object to draw the land only.
 EXPRESSION ('[CLASS]' = 'land')

•Try drawing only the 'water'.
•Try drawing both “classes “using the EXPRESSION keyword.
•Try changing the color of the map.

Next we can add a label layer. It’s easy to add labels, but not so easy to get them
to look good automatically. We add labels as another layer in the map file.

•Add the following layer below the states layer in the map file.

LAYER # States Labels
 NAME state_label
 DATA states_ugl
 STATUS DEFAULT
 TYPE ANNOTATION

 PROJECTION
 "init=epsg:4269"
 END

 LABELITEM "STATE"
 CLASSITEM "CLASS"
 CLASS # States class

 EXPRESSION 'land'
 COLOR -1 -1 -1
 LABEL
 COLOR 132 31 31
 SHADOWCOLOR 218 218 218
 SHADOWSIZE 2 2
 TYPE TRUETYPE
 FONT arial-bold
 SIZE 14
 ANTIALIAS TRUE
 POSITION CL
 PARTIALS FALSE
 MINDISTANCE 250
 BUFFER 4
 END # end of label
 END # end of States class object
END # end of layer object

•Uncomment the FONTSET and SYMBOLSET parameters (near the top of the
map file.

To get the labels to display properly, you can change some of the parameters in
the annotation layer.

•Try changing the “position” and “mindistance” parameters.

Now let's try adding a raster layer. There is a tiff file in the raster subdirectory of
the data directory. Add it below the state layer so that it will display above that
layer. You can use the following code:

LAYER # Shaded Relief Raster
 NAME relief
 DATA "raster/shdrlfi020g_ugl.tif"
 STATUS DEFAULT
 TYPE RASTER
 OFFSITE 0

 PROJECTION
 "init=epsg:4269"
 END
END

To put the state borders on top, you have to add that layer below the raster layer.

•Copy the states layer and the paste it on the line after the raster layer.
•Change the layer TYPE to LINE.
•Move the labels back on top.

Example 2: Adding a User Interface
Controlling the format of MapServer output and creating a user interface is
basically an HTML programming task. If you are unfamiliar with HTML you
may refer to the NCSA (at UIUC) Beginners Guide to HTML at
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimerP1.html.

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimerP1.html

Two additional documents have been provided for this exercise. You will find a
new map file called example2.map and an HTML template called example2.html
in the ms_workshop directory. In order to view an application with an HTML
template you must:

1.Initialize the application by referencing the map file to be use, i.e.:
 <a href="/cgi-
 bin/mapserv.exe?map=C:/Program Files/Apache
Group/Apache2/htdocs/ms_workshop/example2.map">
 Example 2

This is one method to initialize a MapServer application. We can also use a form
that allow users to customize certain application parameters (what layers to
display, what projection to use).

2.Add a “Web” object in the map file to specify which HTML template to use.
3.Create an HTML template that interacts with the MapServer cgi through a

form.

The Web Object in the map file
Open the example2.map file. This map file is based on the file you created in
Example 1 with several additional layers. In addition, a “Web” object has been
added.

WEB
 TEMPLATE example2.html
 IMAGEPATH "C:/Program Files/Apache Group/Apache2/htdocs/tmp/"
 IMAGEURL "/tmp/"
END

The “WEB” object specifies three things:

1.the HTML template file,
2.the path to the temp directory that MapServer uses to write temporary files

and images,
3.the URL for the temp directory (notice that the temp directory must be in

the document root or an otherwise web accessible directory).

HML Template File
Open the example2.html file. This file creates a user interface that allows the
users to zoom in on the map and control which layers are displayed.

1.Tables control the layout of the application (cascading style sheets could be
used).

2.The user interface is contained within a form that accesses the MapServer
CGI.

3.MapServer CGI variables are specified by square brackets (e.g. “[map]”).
The MapServer CGI program replaces these values as the user changes the
display.

4.The “layer” variables correspond to raster and vector layers in the map file.
5.Certain CGI variables are required by MapServer and are specified by

“hidden” input at the beginning of the form.

Try making some changes to the Example 2 application.

•Access the application through a web browser and try changing the display.
You must click refresh every time you change a layer. Notice how the
URL changes.

•Add one more vector layer check box to the application. There is a layer
called “urban” in the Example 2 map file.

Adding a scalebar, legend, and reference map
The column on the right hand side of your application has been reserved for a
legend and reference map. These capabilities are built in to MapServer.

•Add the following objects to the Example 2 map file after the WEB object to
add a scalebar, legend, and reference map to your application.

•Find where these objects are added in the example2.html template file.

SCALEBAR
 IMAGECOLOR 255 255 255
 LABEL
 COLOR 0 0 0
 SIZE TINY
 END
 STYLE 1
 SIZE 72 3
 COLOR 0 0 0
 UNITS MILES
 INTERVALS 2
 TRANSPARENT TRUE
 STATUS EMBED
 POSITION LR
END

LEGEND
 STATUS ON
 LABEL
 TYPE TRUETYPE
 FONT arial
 COLOR 0 0 0
 SIZE 10
 ANTIALIAS TRUE
 END
END

REFERENCE
 STATUS ON
 IMAGE "C:/Program Files/Apache
Group/Apache2/htdocs/ms_workshop/images/ugl_ref1.gif"
 SIZE 155 105
 EXTENT 201621.496941 -294488.284025 1425518.020722 498254.511514

 COLOR -1 -1 -1
 OUTLINECOLOR 255 0 0
END

Making layers scale-dependent
Some layers contain a great amount of detail and will clutter your map unless the
user has zoomed in to a certain scale. For such layers, you can add scale-
dependency – only turning them on when the map is zoomed in.

•Add the layer below to add labels to the lakes when the scale is smaller that
1:800000.

•Try changing the MAXSCALE and SYMBOLSCALE to change the scale at
which the labels turn on and off and how large they appear.

LAYER # Lakes Labels
 NAME lake_label
 DATA hydrop_ugl
 STATUS DEFAULT
 TYPE ANNOTATION
 MAXSCALE 800000
 SYMBOLSCALE 800000

 PROJECTION
 "init=epsg:4269"
 END

 LABELITEM "NAME"
 CLASSITEM "FEATURE"
 CLASS
 NAME "Lakes/Reservoir"
 EXPRESSION ('[FEATURE]' eq 'Lake' or '[FEATURE]' = 'Reservoir')
 COLOR -1 -1 -1
 LABEL
 COLOR 132 31 31
 SHADOWCOLOR 218 218 218
 SHADOWSIZE 2 2
 TYPE TRUETYPE
 FONT arial-bold
 SIZE 9
 ANTIALIAS TRUE
 POSITION CL
 PARTIALS FALSE
 MINDISTANCE 250
 BUFFER 4
 END # end of label
 END # end of LAKES class object
END # end of layer object

Example 3: Queries

Now that we have covered a little bit of HTML template files, we can start
to look at another neat feature of MapServer—queries. MapServer provides
several ways to query vector data layers but we will only look at two of these:
the QUERY and NQUERY modes. The QUERY mode allows you to query

features of a single layer, usually the topmost active layer. NQUERY mode
allows you to query features of all active layers in your application.

Let's first open example2.html and save it as example3.html. We'll work
with example3.html throughout our query examples.

This is how we set our query modes in the html template file:

 <select name="mode">
 <option value="browse">Browse</option>
 <option value="query">Single-Layer Query</option>
 <option value="nquery">Multi-Layer Query</option>
 </select>

And this is how we set query options in the map file, example3.map (I’ll use the
county layer as example):
Snippet from the web object
WEB
 HEADER header.html
 TEMPLATE example1.html
 FOOTER footer.html
end of snippet from web object

County layer snippet
 HEADER "county_header.html"
 FOOTER "county_footer.html"
 CLASSITEM "county"
 CLASS
 NAME "County boundaries"
 EXPRESSION /./
 TEMPLATE "county_query.html"
 COLOR 92 92 92
 END
END # end of county layer snippet

Note the keywords HEADER, FOOTER, and TEMPLATE. These are the
keywords that control the html query template files. Now, let’s look at those
files. Here’s the web object HEADER template:
<html>
<head><title>MapServer Demo Interface</title></head>
<link type="text/css" rel="stylesheet" href="/ms_workshop/ms35.css" />
<body bgcolor=#FFFFFF>

Here’s the web object FOOTER template:
</body>
</html>

Here’s the county layer HEADER template:
<h4>Layer: Counties</h4><p>
<table cellpadding=5 cellspacing=2 border=0>
<tr bgcolor=#CCCCCC><th>STATE</th><th>COUNTY</th></tr>

Here’s the county layer FOOTER template:
</table><p>

Finally, here’s the county layer query TEMPLATE file:
<tr><td>[STATE]</td><td>[COUNTY]</td></tr>

Notice that if you put them together, in the order that MapServer would put
them—WEB HEADER, LAYER HEADER, CLASS TEMPLATE, LAYER
FOOTER, and WEB FOOTER—they form a proper html file. This is how the
QUERY mode works. NQUERY works the same except that the LAYER
FOOTER, and the LAYER HEADER templates are repeated for each LAYER, and
the CLASS TEMPLATE is repeated for each CLASS within a LAYER.

Now let’s work on our example map and HTML template files.
Step 1. Create a file called header.html and type the following lines of html code:
<html>
<head><title>MapServer Demo Interface</title></head>
<link type="text/css" rel="stylesheet" href="/ms_workshop/ms35.css" />
<body bgcolor=#FFFFFF>

Step 2. Create a file called footer.html and insert the following lines:
 <h4>Query Map Examples</h4>
 <p>
 <table cellpadding="3" cellspacing="0" border="0">
 <tr>
 <td>

 </td>
 <td>
 <img border="2"
src="/cgi-bin/mapserv.exe?map=[map]&queryfile=c:/apps/
apache/htdocs/tmp/EXAMPLE3[id].qy[get_layers]
&mode=map&size=200+150">
 </td>
 </tr>
 <tr>
 <th align="center">standard querymap</th>
 <th align="center">cached query</th>
 </tr>
 </table>
 </body>
 </html>

Step 3. Create a file called county_header.html. This will be the header template
file for the county layer. Insert the following lines in the file and save when
finished:
<h4>Layer: Counties</h4>
<p><table cellpadding=5 cellspacing=2 border=0>
<tr bgcolor=#CCCCCC><th>STATE</th><th>COUNTY</th></tr>

Step 4. Create a file called county_footer.html. This will be the county layer’s
footer template. Insert the following line and save when finished:
</table><p>

Step 5. Create one more file and call it county_query.html. This is where
MapServer will dump your layer query results. Insert the following line in the
file and save when done:
<tr><td>[STATE]</td><td>[COUNTY]</td></tr>

Let’s have a quick look at this file. The two MapServer CGI variables—[STATE]
and [COUNTY]—we supplied here come from the shapefile’s attribute table (the
DBF file associated with the county shapefile). You can use ArcView (or other
data viewer such as ESRI’s ArcExplorer, PCI Geomatics’ FreeView, etc.) to look
at the attribute table and determine which attribute to include in your query
template. You can also use Excel or similar spreadsheet software to open the
DBF file (open as DBase IV file) but make sure not to make any changes to the
file. You could ruin the association between this table and the rest or the
shapefile files if you change the wrong attribute.

Step 6. Now, let’s edit our map file. Open the file example3.map in a text editor
and append the following lines. Find the WEB object and add these two lines
within the object:
HEADER “header.html”
FOOTER “footer.html”

Find the county LAYER and just before the CLASS object (just after the keyword
CLASSITEM), insert the following lines:
HEADER “county_header.html”
FOOTER “county_footer.html”

And within the county CLASS object, insert this line (anywhere but preferably
after the keyword EXPRESSION):
TEMPLATE “county_query.html”

Step 7. Check the html template file, example3.html, and look for the lines:
 <select name="mode">
 <option value="browse">Browse</option>
 <option value="query">Single-Layer Query</option>
 <option value="nquery">Multi-Layer Query</option>
 </select>

If the query and nquery options are not there, make sure to add it. Save the file if
you made any changes.

Let’s test our query by running the application. Type http://localhost/cgi-
bin/mapserv.exe?map=c:/apps/apache/htdocs/ms_workshop/example3.map
&layer=state&layer=county&layer=water on your browser’s URL box. Select
“Single-Layer Query’ on the MapServer Mode drop-down selection menu. Click
on any county. MapServer should return the results complete with a
QUERYMAP. We’ll get into the QUERYMAP shortly but first we should add a
few more queryable layers. Let’s make the “water features”, the “federal/indian
lands”, and “urban” layers available for query.

http://localhost/cgi-bin/mapserv.exe?map=c:/apps/apache/htdocs/ms_workshop/example3.map&layer=state&layer=county&layer=water
http://localhost/cgi-bin/mapserv.exe?map=c:/apps/apache/htdocs/ms_workshop/example3.map&layer=state&layer=county&layer=water
http://localhost/cgi-bin/mapserv.exe?map=c:/apps/apache/htdocs/ms_workshop/example3.map&layer=state&layer=county&layer=water

Step 8. Repeat steps 3 to 5, using the layer name as prefix for each filename.
Remember to add or delete table rows to accommodate the number of attributes
in your template.

The table below lists the attributes to use in the CLASS TEMPLATE query
template:

LAYER ATTRIBUTES
WATER FEATURE, NAME, STATE
FED FEATURE1, FEATURE2, NAME1,URL,STATE
URBAN NAME, STATE

Step 9. Repeat step 6 for each of the layers above.

Test the query again by selecting different layers. Try the NQUERY mode by
selecting “Multi-Layer Query” from the MapServer Mode drop-down selection
menu. Click anywhere where there’s more than one active layer (i.e., lakes on
top of urban areas).

QUERYMAP
Querymaps allow users to see what their query results look like in map form. To
set a querymap, you need to add the QUERYMAP object in your map file. It’s
been done for you but do have a look at it—it’s a simple but very useful object.

QUERYFILE
The second map generated by your query comes from the QUERYFILE.
QUERYFILE is a MapServer CGI variable (not a map file object) and is generated
by MapServer using the SAVEQUERY variable. When SAVEQUERY is given a
value of “true”, MapServer generates a QUERYFILE which can then be used to
create a querymap on subsequent queries.

Example 4: Projections
Open a browser window and enter the following URL: http://127.0.0.1/cgi-
bin/mapserv.exe?map=C:/Program Files/Apache
Group/Apache2/htdocs/ms_workshop/example4.map&layer=states&layer=co
unty&layer=fedland&layer=water&layer=mod_evi&mode=browse

This is what our application would have been like if we didn’t use on-the-fly
reprojection. For the next 30 minutes or so we will learn about on-the-fly
reprojection capabilities of MapServer.

http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example4.map&layer=states&layer=county&layer=fedland&layer=water&layer=mod_evi&mode=browse
http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example4.map&layer=states&layer=county&layer=fedland&layer=water&layer=mod_evi&mode=browse
http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example4.map&layer=states&layer=county&layer=fedland&layer=water&layer=mod_evi&mode=browse
http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example4.map&layer=states&layer=county&layer=fedland&layer=water&layer=mod_evi&mode=browse

MapServer works with projected and unprojected (geographic) datasets.
However, for MapServer to calculate scales and create scalebars properly, the
dataset has to be projected in a grid-based coordinate projection system (i.e.
UTM, Lambert, Albers). MapServer can reproject geographic data on-the-fly,
with the help of the Proj.4 library. In addition, the GDAL library provides
support for raster file reprojection. Be aware that on-the-fly reprojection will
result in less than optimal performance for MapServer. Reprojection can be a
compute-intensive process, and can slow MapServer’s output creation
substantially.

Having said that, on-the-fly reprojection can still be very useful—you can
reproject your data to any projection you want. You might want to create an
application where the client chooses the projection and MapServer generates the
proper map for that particular client. If you want to create a WMS-compliant
application, you must specify your spatial reference system (SRS). You’ll need
projection support for that SRS to be recognized by MapServer.

We can set our map file PROJECTION object using either “raw” Proj.4
parameters or specifying an EPSG reference number. This “reference system”
was created by the European Petroleum Survey Group (EPSG, hence the name)
and contains geodetic parameters for several projections. It’s become a standard
reference system, used in WMS applications. Unfortunately, most of the
projections defined in the EPSG file are for smaller areas (larger scale maps) than
the upper great lakes. You could use UTM projection for your application but
the upper great lakes region cover two UTM zones. What I have done is what
ESRI and other companies have done—create custom projection definitions.

For this application, you will use Lambert Azimuthal Equal-Area projection, a
common CONUS projection, and UTM Zone 15 using WGS84 as spheroid.

Define custom EPSG projection definition.
Step 1. Edit “/usr/local/ms_lib/share/proj/epsg“ using a text editor and
append the following two lines at the end of the file:
CLARKE1866/NAD27/Lambert Azimuthal Equal-Area (for Continental US)
<42301> +proj=laea +lat_0=45 +lon_0=-100 +ellps=clrk66 +datum=NAD27 +units=m no_defs <>

Save the file when done. That’s all you need to do to add a custom projection in
the epsg file.

Define your output PROJECTION object in the map file, example4.map.
Step 1. Edit the map file using a text editor and look for the PROJECTION
keyword, just after the WEB object block. Check to make sure the line
“init=epsg:40001” is enclosed by the keywords PROJECTION and END. The

commented text represents the alternative definition scheme for this custom
projection (Lambert Azimuthal Equal-Area). If you don’t want to mess with the
EPSG file, you have no choice but to define your projection in this way.

Step 2. Add the following lines to each LAYER objects, before the CLASSITEM
and CLASS definitions:
 PROJECTION
 "init=epsg:4269"
 END

The reference number 4269 defines the geographic projection (latlon) with the
GRS 1980 ellipsoid and NAD83 datum.

You define a different projection for input layers and for the output image to
“tell” MapServer to use on-the-fly reprojection.

Step 3. You then have to replace the extents of both the main and reference map.
Replace the two EXTENT lines with:
EXTENT 201621.496941 -294488.284025 1425518.020722 498254.511514

Save your map file and type this on your browser’s URL box:
http://127.0.0.1/cgi-bin/mapserv.exe?map=C:/Program Files/Apache
Group/Apache2/htdocs/ms_workshop/example4.map&layer=states&layer=co
unty&layer=fedland&layer=water&layer=mod_evi&mode=browse

Step 4. Now edit example4.map once again and this time replace
“init=epsg:40001” with “init=epsg:32615” on the main projection object. If you
don’t want to use the EPSG reference system, you can specify UTM projection
like this:
PROJECTION
 "proj=utm"
 "zone=15"
 "ellps=WGS84"
 "datum=WGS84"
END

Step 5. Comment out the “geographic extent” line and uncomment the “UTM
Zone 15 extent” line. Save your map and look at your application once again.
This ends the projection section of the workshop.

Example 5: WMS-compliant Server application
For our final example today, you will create a WMS compliant server application
and test it against CubeView, Cubewerx’s WMS client application. If everything
works properly, you should be able to view your data layers in CubeView.

http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example4.map&layer=states&layer=county&layer=fedland&layer=water&layer=mod_evi&mode=browse
http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example4.map&layer=states&layer=county&layer=fedland&layer=water&layer=mod_evi&mode=browse
http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example4.map&layer=states&layer=county&layer=fedland&layer=water&layer=mod_evi&mode=browse

We have already covered projections in the previous example so I won’t talk
much about it except to say that it is required in WMS application.

MapServer uses the METADATA object for WMS-specific parameters. We have
to specify METADATA objects in two levels, one at the main map level and the
other at the layer level. The METADATA object in the main level provides
parameters for the entire application while the layer level object provides
parameters for a particular layer only. In other words, some of the parameters in
the main level are inherited by each layer (i.e. projection reference).

Let’s work on your application.
Create a METADATA object at the MAP level.
Step 1. Open example5.map in a text editor and add the following two lines just
before the PROJECTION object:

METADATA
END

This is how the METADATA object is defined. We will add the parameters
between these two lines.

Step 2. Add a title to our application by inserting the following line in our
METADATA object:

WMS_TITLE "A WMS Server application"

Step 3. Add an abstract to our application by inserting the following line:

WMS_ABSTRACT “This WMS application was created using MapServer 3.5, an open-
source web mapping tool.”

Step 4. Add an access constraint statement by inserting the following line:

WMS_ACCESSCONSTRAINTS none

This isn’t a required parameter but you might need it in your applications.

Step 5. Add an online resource (URL) descriptor by inserting the following line:

WMS_ONLINERESOURCE “http://localhost/cgi-bin/mapserv.exe?map=C:/Program
Files/Apache Group/Apache2/htdocs/ms_workshop/example5.map”

This provides information on how WMS clients can access this application.

Step 6. Add our projection info by inserting the following line:

WMS_SRS "EPSG:4269 EPSG:32615 EPSG:42103 EPSG:42303"

Here, we are providing several projection options for clients.

http://localhost/cgi-bin/mapserv.exe?map=C/ms_workshop/example5.map
http://localhost/cgi-bin/mapserv.exe?map=C/ms_workshop/example5.map

Step 7. Add some bounding coordinates to our application by inserting the
following line:

WMS_LATLONBOUNDINGBOX "-97.238976 41.619778 -82.122902 49.38562"

Step 8. Save your map file. You’ve finished defining your initial WMS
parameters and it should look like this:
 METADATA
 WMS_TITLE "MapServer 3.6 Tutorial: Section 5, Example 3"
 WMS_ABSTRACT "This WMS client application is provided as an example for beginning
MapServer users."
 WMS_ACCESSCONSTRAINTS none
 WMS_ONLINERESOURCE "http://localhost/cgi-bin/mapserv.exe?map=C:/Program
Files/Apache Group/Apache2/htdocs/ms_workshop/example5.map"
 WMS_SRS "EPSG:4269 EPSG:32615 EPSG:42103 EPSG:42303"
 WMS_LATLONBOUNDINGBOX "-97.238976 41.619778 -82.122902 49.38562"
 END

Create a METADATA object at the LAYER level.
I will provide step-by-step instructions for the first layer and will let you do the
same thing for the rest of the layers.
Step 1. Open example5.map, if it isn’t already, for editing. Insert the
METADATA object just before the PROJECTION object:

METADATA
END

Step 2. Add the data layer title to the object by inserting the following line:
WMS_TITLE "Upper Great Lakes states"

Step 3. Add a data layer abstract by inserting the following line:

WMS_ABSTRACT "This is the state boundary layer for Michigan, Minnesota and
Wisconsin. See http://www.nationalatlas.gov/statesm.html for more information."

This is really all you need for each layer but we want to add more details so…
Step 4. Add the projection info for the data layer by inserting the following line:

WMS_SRS "EPSG:4269"

Step 5. Create a geographic bound by inserting the following line:

WMS_LATLONBOUNDINGBOX "-97.238976 41.619778 -82.122902 49.38562"

We’ve created the METADATA object for the first layer. Now you can go ahead
and add it on each of the other layers, changing the title and abstract as
appropriate.

Step 6. Save when done and view the application by typing the following on you
browser URL box:
http://127.0.0.1/cgi-bin/mapserv.exe?map=C:/Program Files/Apache

Group/Apache2/htdocs/ms_workshop/example5.map&VERSION=1.1.0&REQ
UEST=GetCapabilities

Save the resulting file when asked. Call it something like “mywmsapp.xml”.
Open it using your favorite browser, or your text editor.

Now, let’s test your server against one of these clients:
http://www.cubewerx.com/demo/cubeview/cubeview.cgi or
http://mapserver.refractions.net/phpwms/phpwms-rel/ or
http://mapserver.refractions.net/phpwms/phpwms-cvs/

To learn more about WMS-compliant MapServer applications, please visit
http://mapserver.gis.umn.edu/doc/wms-server-howto.html and
http://mapserver.gis.umn.edu/doc/wms-client-howto.html.

Example 6: The Java mapimage applet.
The HTML template file “example6.html” includes a JavaScript code for a more
advanced map interface control . This JavaScript calls a Java applet, called
“mapplet”, that allow web users to draw rectangular boxes on the map. Visit
http://mapserver.gis.umn.edu/doc/mapplet-howto.html for instructions on
how to use the mapplet with your MapServer applications.

To see how this mapplet works, point your browser to http://localhost/cgi-
bin/mapserv.exe?map=C:/Program Files/Apache
Group/Apache2/htdocs/ms_workshop/example6.map&layer=relief&layer=stat
es. You can edit example6.html to see how the mapplet is implemented in this
example.

That’s all folks!

http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example5.map&VERSION=1.1.0&REQUEST=GetCapabilities
http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example5.map&VERSION=1.1.0&REQUEST=GetCapabilities
http://127.0.0.1/cgi-bin/mapserv.exe?map=C/ms_workshop/example5.map&VERSION=1.1.0&REQUEST=GetCapabilities
http://www.cubewerx.com/demo/cubeview/cubeview.cgi
http://mapserver.gis.umn.edu/doc/wms-server-howto.html
http://mapserver.gis.umn.edu/doc/wms-client-howto.html
http://mapserver.gis.umn.edu/doc/mapplet-howto.html
http://localhost/cgi-bin/mapserv.exe?map=C/ms_workshop/example6.map&layer=relief&layer=states
http://localhost/cgi-bin/mapserv.exe?map=C/ms_workshop/example6.map&layer=relief&layer=states
http://localhost/cgi-bin/mapserv.exe?map=C/ms_workshop/example6.map&layer=relief&layer=states
http://localhost/cgi-bin/mapserv.exe?map=C/ms_workshop/example6.map&layer=relief&layer=states

Prepared by:
Jamie Smedsmo, Ranga Raju Vatsavai and Perry Nacionales

Version 1.0.2
Last updated by Perry, 20030606.

	Requirements:
	Getting Started

	Installation
	Example 1: Displaying a basic map
	Example 2: Adding a User Interface
	The Web Object in the map file
	HML Template File
	Adding a scalebar, legend, and reference map
	Making layers scale-dependent
	Example 3: Queries
	Example 4: Projections
	Example 5: WMS-compliant Server application

